equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito






Para um sistema físico composto por partículas de spin zero, existe um potencial de Coulomb blindado que é conhecido como potencial de Yukawa. Tal pontencial é da forma

equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

e que é, claramente, um potencial do tipo central. Na equação acima,  é uma constante (positiva) de acoplamento que configura a intensidade da força efetiva,  é a massa da partícula afetada pelo potencial,  é a velocidade da luz e  a constante de Planck. Naturalmente, podemos mostrar que o potencial  está associada a uma força sempre atrativa.

A História

Hideki Yukawa (físico teórico japonês) mostrou na década de 1930 que tal potencial resulta da interação/troca de um campo escalar massivo como o campo de um bóson, também maciço. Uma vez que o mediador do campo correspondente tem um certo alcance, que é inversamente proporcional à massa do mediador de partícula [1]. Dado que o alcance aproximado da força nuclear era conhecido, a equação Yukawa poderia ser utilizada para prever o massa de repouso aproximada da partícula mediadora do campo de força, mesmo antes de ser descoberto. No caso da força nuclear, esta massa foi previsto ser cerca de 200 vezes a massa do elétron, e isto foi mais tarde considerado ser uma previsão da existência do píon, antes de ter sido detectado, em 1947.

Tal potencial tem várias aplicações, incluindo a interacção entre dois núcleos. Dois núcleos podem experimentar forte interação atrativa devido à taxa de câmbio pions carregados, semelhante à forma como duas partículas interagem eletromagneticamente através da troca de fótons. Como o campo eletromagnético é "transportado" por fótons, o campo piônico potencial, expressamente descrito por Yukawa, é "transportado" por pions.

Relação com o potencial de Coulomb

Potencial em função de r

Se tomarmos o limite  →  (ou até mesmo a igualdade) no potencial de Yukawa, nós temos

equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

de modo que podemos identificar a equação acima, com a ε, como o potencial de Coulomb. Diferentemente do potencial de Yukawa, podemos ver claramente que  decresce muito lentamente, enquanto que o potencial de Yukawa decresce muito rapidamente (a depender da massa m). Por essa razão, dizemos que o potencial de Yukawa é um potencial de curto alcance, enquanto que o potencial de Coulomb não é. No gráfico que é apresentado ao lado, podemos ver como o potencial de Yukawa comporta-se, com a distância , para diferentes valores de .






Em mecânica quântica, um propagador é uma função ou distribuição que descreve a amplitude da probabilidade de uma partícula se mover de uma posição para outra. Tecnicamente, é a função de Green para a equação do movimento.

Definição

Partícula não-relativística

O propagador  é uma função ou distribuição que verifica a seguinte equação:

equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

 .

Aqui  é o hamiltoniano e  é a distribuição dirac.

Por exemplo, considere uma partícula não relativística livre. O propagador, portanto, verifica:

equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

 .

Para resolver isso, converta em momento- e espaço de frequência :

equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

 .

Seguindo-se que:

equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

 .

Converta de volta para posição e espaço-tempo:

equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

 .

A integral é ambígua, porque tem um pólo em

equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

 .

Deve-se desambiguar a integral adicionando um infinitesimal, mas existem dois sinais possíveis (Por isso o propagador não é único). Ao adicionar um infinitesimal pode-se calcular:

equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

 ,

Onde:

Representa a função de Heaviside. A função  chamada de propagador passado (retarded em inglês), porque  é diferente de zero apenas se . Enquanto isso, a função  é chamada de propagador futuro (advanced em inglês), porque  é diferente de zero apenas se .

Partícula relativística

Usamos uma convenção de sinalização  para a métrica que, .

Uma partícula escalar relativística verifica a equação de Klein-Gordon . Daí o propagador  de uma partícula escalar relativística é definido como a função de Green da equação de Klein-Gordon. Eis:

equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

 .

Para resolver, converte-se em momento linear:

equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

 .

Então:

 .

Converte-se de volta para o espaço de posição:

equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

 .

A integral é ambígua porque tem dois pólos em:

equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

 .

Deve-se desambiguar a integral adicionando um infinitesimal. De acordo com a teoria da integral curvilínea, podemos subir ou descer em cada pólo. Portanto, existem quatro métodos diferentes para eliminar a ambiguidade da integral; o propagador não é único. Se subirmos pelos dois pólos, o passado (em inglês retarded) será encontrado:

equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

Onde  representa a função de Bessel de primeiro tipo e . Se descermos em ambos os pólos, o propagador futuro (advanced) será encontrado:

equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

Se descermos pelo pólo esquerdo (em  e para cima através do pólo direito (em 

equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////), O propagador de Feynman será encontrado:

equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

Onde  representa a função de Hankel de primeiro tipo e  significa a função modificada de Bessel de segundo tipo. Se subirmos pelo pólo esquerdo e descermos pelo pólo direito, o propagador de Dyson encontrar-se-á:

equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

Onde  representa a função de Hankel do segundo tipo .

Os quatro propagadores verificam as seguintes equações.

equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

 .

Além disso, os propagadores exprimem-se com valores esperados vazios de operadores de campo:

equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

 .

Partícula com rotação

Para uma partícula dirac  seguindo a equação de dirac:

equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

 ,

o propagador é definido semelhantemente:

equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

 .

No momento de espaço:

equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

para o propagador de Feynman, etc.

Para uma partícula vetoral de massa zero (por exemplo, o fóton), existem vários ‘gauges’ possíveis. Um medidor simples é o medidor de Lorenz . Portanto, a partícula segue as equações de Maxwell com um termo gaussiano:

 .

O propagador é definido de forma semelhante:

 .

No momento linear do espaço o propagador (de Feynman, etc.) é:

equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

 .

Comentários